全等三角形的判定(相似三角形的判定)

大家好,关于全等三角形的判定很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于相似三角形的判定的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

全等三角形判定条件(六种)是什么

全等三角形判定条件(六种)是:

1、定义法:两个完全重合的三角形全等。

2、SSS:三个对应边相等的三角形全等。

3、SAS:两边及其夹角对应相等的三角形全等。

4、ASA:两角及其夹边对应相等的三角形全等。

5、AAS:两角及其中一角的对边对应相等的三角形全等。

6、HL:斜边和一条直角边对应相等的两个直角三角形全等。经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

全等三角形是几何中全等之一。根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。

全等三角形的性质:

1、全等三角形的对应角相等。

2、全等三角形的对应边相等。

3、能够完全重合的顶点叫对应顶点。

4、全等三角形的对应边上的高对应相等。

注意事项

1、SSS、SAS、ASA、AAS可用于任意三角形;HL只限于直角三角形。

2、注意SSA、AAA不能判定全等三角形。

3、在证明时注意利用定理,如:等式性质、等量代换、等角重合有等角、公共边、公共角、对顶角相等、等角或同角的余角或补角相等、角平分线定义、线段中点定义等。

4、证明全等写条件时注意书写顺序。

5、写全等结论时注意对应顶点的位置。

6、有时全等三角形会结合等腰三角形出现命题。

全等三角形的判定方法有哪五种

全等三角形的判定方法:“边边边”、“边角边”、“角边角”、“角角边”、“直角、斜边、边”。

1、SSS(边边边),当三角形的三边对应相等时那么这两个三角形是全等三角形。

2、SAS(边角边),两边及其夹角对应相等的三角形是全等三角形。

3、ASA(角边角),两角及其夹边对应相等的三角形全等。

4、AAS(角角边),两角及其一角的对边对应相等的三角形全等。

5、RHS(直角、斜边、边),在一对直角三角形中,斜边及另一条直角边相等。

全等三角形性质:

1、全等三角形的对应角相等。

2、全等三角形的对应边相等。

3、能够完全重合的顶点叫对应顶点。

4、全等三角形的对应边上的高对应相等。

5、全等三角形的对应角的角平分线相等。

6、全等三角形的对应边上的中线相等。

7、全等三角形面积和周长相等。

8、全等三角形的对应角的三角函数值相等。

全等三角形的六种判定是什么

判定全等三角形(包括直角三角形全等的判定)有六种方法:

(1)定义法:两个完全重合的三角形全等。

(2)SSS:三个对应边相等的三角形全等。

(3)SAS:两边及其夹角对应相等的三角形全等。

(4)ASA:两角及其夹边对应相等的三角形全等。

(5)AAS:两角及其中一角的对边对应相等的三角形全等。

(6)HL:斜边和一条直角边对应相等的两个直角三角形全等。

三角形角的性质:

1、在平面上三角形的内角和等于180°(内角和定理)。

2、在平面上三角形的外角和等于360°(外角和定理)。

3、在平面上三角形的外角等于与其不相邻的两个内角之和。

4、一个三角形的三个内角中最少有两个锐角。

5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

全等三角形的判定方法五种分别是什么

全等三角形的判定方法:“边边边”、“边角边”、“角边角”、“角角边”、“直角、斜边、边”。

1、SSS(Side-Side-Side)(边边边),当三角形的三边对应相等时那么这两个三角形是全等三角形。

2、SAS(Side-Angle-Side)(边角边),两边及其夹角对应相等的三角形是全等三角形。

3、ASA(Angle-Side-Angle)(角边角),两角及其夹边对应相等的三角形全等。

4、AAS(Angle-Angle-Side)(角角边),两角及其一角的对边对应相等的三角形全等。

5、RHS(Right angle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)),在一对直角三角形中,斜边及另一条直角边相等。

扩展资料:

全等三角形的性质:

1、全等三角形的对应角相等。

2、全等三角形的对应边相等。

3、能够完全重合的顶点叫对应顶点。

4、全等三角形的对应边上的高对应相等。

5、全等三角形的对应角的角平分线相等。

6、全等三角形的对应边上的中线相等。

7、全等三角形面积和周长相等。

8、全等三角形的对应角的三角函数值相等。

判断三角形全等的注意:

三个角对应相等的两个三角形不一定全等,两边和其中一边的对角对应相等的两个三角形也不一定全等。

全等三角形的运用:

1、性质中三角形全等是条件,结论是对应角、对应边相等。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

2、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。

参考资料来源:百度百科-全等三角形

关于全等三角形的判定到此分享完毕,希望能帮助到您。